ACADEMIC REGULATIONS FOR M.Tech. PROGRAMMES

Applicable to the students admitted from the Academic year 2015-2016

MAHARAJ VIJAYARAM GAJAPATHI RAJ COLLEGE OF ENGINEERING (Autonomous)

(Approved by AICTE, New Delhi, and permanently affiliated to JNTUK, Kakinada) Re-Accredited by NBA, Re-accredited by NAAC with 'A' Grade, Listed u/s 2(f) & 12(B) of UGC Act 1956. Vijayaram Nagar Campus, Chintalavalasa, Vizianagaram-535005, Andhra Pradesh The visionaries

Late Dr. P V G Raju Raja Saheb of Vizianagaram Founder Chairman-MANSAS Ex-Minister for Education and Health, Govt. of AP Ex Member of Parliament

Dr. P. Anand Gajapathi Raju Chairman-MANSAS Ex-Minister for Education and Health Govt. of AP Ex Member of Parliament

P. Ashok Gajapathi Raju Vice Chairman-MANSAS Union Minister for Civil Aviation, Govt. of India Ex-Minister for Finance, Govt. of AP

Vision

Maharaj Vijayaram Gajapathi Raj College of Engineering strives to become a centre par excellence for technical education where aspiring students can be transformed into skilled and well-rounded professionals with strong understanding of fundamentals, a flair for responsible innovation in engineering practical solutions applying the fundamentals, and confidence and poise to meet the challenges in their chosen professional spheres.

Mission

The management believes imparting quality education in an atmosphere that motivates learning as a social obligation which we owe to the students, their parents/guardians and society at large and hence the effort is to leave no stone unturned in providing the same with all sincerity. Towards that end, the management believes special focus has to be on the following areas:

- Have on-board staff with high quality experience and continuously updating themselves with latest research developments and sharing that knowledge with students.
- Having a well stream-lined teaching learning process that is continuously assessed for effectiveness and fine-tuned for improvement.
- Having state-of-the-art lab and general infrastructure that gives students the necessary tools and means to enhance their knowledge and understanding.
- Having a centralized department focused on improving placement opportunities for our students directly on campus and coordinating the training programs for students to complement the curriculum and enhance their career opportunities.
- Having advanced research facilities and more importantly atmosphere to encourage students to pursue self-learning on advanced topics and conduct research.

ABOUT THE INSTITUTION:

Maharajah Alak Narayan Society of Arts and Science (MANSAS) is an Educational Trust founded by Dr. (late) P.V.G Raju, Raja Saheb of Vizianagaram in the hallowed memory of his father Maharajah Alak Narayan Gajapati with a view to confound socioacademic inequalities in the Vizianagaram principality executing a trust deed on 12-11-1958 duly established Maharajah's College and other educational institutions in and around Vizianagaram. The Trust is a charitable one published under Section 6 a (1) of A.P Charitable and Hindu Religious Institutions and Endowment Act 30 of 1987.

The object of the Trust is to manage the properties of educational institutions under it and to promote and advance the cause of education in general, besides awarding scholarships to deserving students enabling them to undergo special training in science and industries in and out of India. The Trust has made an uncompromising contribution to the nation by presenting the stalwarts like Sri V.V. Giri, former President of India, Prof. Swami Gnanananda, a renowned nuclear scientist, Major K. V. Krishna Rao and many more.

Trust offers KG to PG level education in Arts, Sciences, Law, Pharmacy, Humanities Education, Engineering and Management and presently houses 12 Educational Institutions. MVGR College of Engineering is one of the 12 institutes.

Maharaj Vijayaram Gajapathi Raj (MVGR) College of Engineering was established in the year 1997 by Maharaj Alak Narayan Society for Arts and Sciences (MANSAS) to impart quality technical education in north coastal Andhra Pradesh. MVGR College of Engineering is located in lush green, serene and pollution free environment spread over 60 acres of land in Chintalavalasa village situated in the outskirts of Vizianagaram, a fort city in the north coastal region of Andhra Pradesh. MVGR College of Engineering

- Established in 1997
- Re-Accredited for all eligible UG Programs by NBA
- Also Re-accredited with 'A' grade by NAAC of UGC
- Permanently affiliated to JN Technological University-Kakinada, KAKINADA

MVGR College of Engineering is rated as one among the best self-financing colleges in the state of Andhra Pradesh as it sets up highest standards in all areas of curricular, cocurricular and extra-curricular activities and in students' placements. Based on industry and expert's feedback, the college is updating the curriculum from time to time. The college offers many value added add-on courses students and conducts training programs to meet the industries' requirements.

Academic Regulations for M.Tech. Programmes

Applicable to the students admitted from the Academic year 2015-2016 onwards.

1. COURSE PATTERN:

• The program is for 2 academic years with 4 semesters.

2. AWARD OF DEGREE:

A student will be declared eligible for the award of degree if he/she fulfills the following academic regulations.

- a) A student shall be declared eligible for the award of the degree, if he/she pursues a course of study for not less than Two academic years and not more than Four academic years.
- b) The student shall register for 80 credits and secure all 80 credits.
- c) Students who fail to complete their Two Years Course of study within Four years shall forfeit their seat and their admission shall stand cancelled.

S. No. Department Name of the Program Windchill 10.2 PDM by Adroitec Engineering Solutions Pvt. 1 MECH Ltd., Hyderabad 2 Creo 2.0 by PTC MECH 3 Edgecam by Verosoft, UK MECH Chemical Process Design and Simulation by Simtech 4 CHEM Simulations, Hyderabad Embedded Systems by ThinkLABS, Mumbai 5 ECE 6 ECE Labview by National Instruments Systems India Pvt. Ltd. Unified Technology Learning Program (UTLP) by Wipro 7 ECE Mission 10X CSE, IT PEGA by Virtusa Corporation 8 Microsoft technologies by Microsoft Corp. 9 CSE, IT 10 CSE, IT Ethical Hacking by EC-Council Academia Java and C by Talent Sprint CSE, IT 11 Network Analyst (CCNA) by Cisco Systems Inc 12 CSE, IT CSE, IT Java Programming (OCJP) and DBMS by Oracle 13 14 PLC, Drives and Automation by Siemens EEE 15 PLC by New Dawn Automation EEE 16 Civil Remote Sensing and GIS by Indian Institute of Remote Sensing

3. CERTIFICATION PROGRAMME:

- a) The institution shall offer the certification programs by it self or in collaboration with industry/such other institutions deemed to have specialized expertise in the proposed area of training.
- b) Only students of the institution shall be eligible to register on payment of prescribed fee.

- c) However, subject to availability of resources and the demand the institution may offer the program to external candidates meeting the pre-qualification requirements and in the order of the merit.
- d) The duration of the course and design of the content shall be done by the respective departments of the institution by themselves or in collaboration with industry/such other institutions deemed to have specialized expertise in the proposed area of training.
- e) The duration under normal condition shall not exceed 50 hours per semester else it can suitably distribute over a number of semesters.
- f) Mere enrolment/registration for the program shall not entitle any claim for award of certificate.
- g) A candidate shall be deemed eligible for the award of the certificate if he/she
 - Attends at least 75% of scheduled training sessions
 - Complies to all the requirements of submission of the assignments, presentations, seminars, projects, etc., and also appears for periodic tests
 - Shall attain minimum levels of performance as prescribed by the departments successfully
 - Shall pay such fee as deemed fit for the certification
 - A candidate registered and failed to meet the requirements shall be permitted to repeat the said training one another time after remitting 25% of the fee fixed for the program as re-registration fee

Name of the Program	Degree		
	B.Tech (Chemical)		
UG	B.Tech.(CSE)		
Programs	B.Tech.(ECE)		
(Engineering	B. Tech (Mech)		
&	B.Tech(IT)		
Technology)	B.Tech(EEE)		
	B.Tech(Civil)		
PC.	M.Tech.(Machine Design)		
PO Drograma	M.Tech.(CSE)		
Flograms	M.Tech.(VLSI)		
(Engineering	M.Tech.(CN&IS)		
a Technology)	M.Tech.(Structural Engg.)		
Technology)	M. Tech. (Power Systems)		
Other PG	MBA		
Programs	WIDA		
Research Programme	Ph.D		

4. COURSES OFFERED:

M.Tech.

5. DISTRIBUTION AND WEIGHTAGE OF MARKS:

- a) All Theory courses are assessed for 100 marks with a split of 40 marks for internal assessment and 60 marks for semester end external examination.
 - Two internal assessments tests (90 min each), for each theory course are conducted over the period of the semester, one in the middle and the other at the end and the performances are averaged for 30 marks.
 - An internal assessment test shall have 3 questions each for 10 marks, all questions to be answered.
 - A student shall be assessed for two assignments/seminars or a combination each for 5 marks and for a total of 10 marks.
 - External examination is for 60 marks (180 min). Question paper contains 7 questions at least 1 question from each unit. Each question carries 12 marks. A student is expected to answer any 5 questions.

b) Laboratory/Practice:

All Laboratory/Practice courses are assessed for 100 marks with a split of 40 marks for internal assessment and 60 marks for semester end external examination.

- Continuous assessment for 20 marks for each experimental session finally averaged to 20 marks.
- An internal assessment test conducted at the end of the semester shall be assessed for another 20 marks where a student is expected to perform at least one laboratory test/experiment over duration of 3 hours or project based assessment.
- External examination is for 60 marks (180 min) conducted and assessed by an external and internal examiners.
- Both internal and external examination shall include assessment of the student on
 - a) Knowledge of principles/concepts involved
 - b) Experimental design
 - c) Result interpretation and analysis
 - d) Experimental report

c) Drawing/Design/Estimation:

These courses are assessed for 100 marks with a split of 40 marks for internal assessment and 60 marks for semester end external examination.

- Continuous assessment for 20 marks for each unit finally averaged to 20 marks.
- Two internal assessment tests are conducted during the semester which shall be assessed for another 20 marks by taking the average.

d) Project Evaluation:

Duration is TWO semesters -40 weeks are mandatory to submit.

- > PRC includes HOD and two other senior faculties, one being the guide.
- > To register for project work, a student shall complete all the course work requirements of I and II semesters.
- > The progress of the work shall be periodically reviewed by PRC.
- > The PRC shall authorise /approve change of guide/topic/title as deemed fit.
- A student shall submit Status Report in line with the recommended project calendar as approved by PRC.
- Student has to submit draft copy of thesis/dissertation to PRC, and also shall make an oral presentation. He/she shall publish the work in journal or international conference of repute and relevance.
- > A student shall make 5 copies of PRC approved draft copy of the work and submit.
- Candidates who have successfully passed all the I and II semester courses shall be eligible for submitting the thesis.
- > The thesis shall be adjudicated by the internal and external examiners in the presence of Head of the department.
- Student shall be examined for his contributions, knowledge along with the quality of the work through presentations and Viva-voce.
- > The assessment of work shall be done on the following lines:
 - Directed study/self study (Pre-requisite) shall be evaluated internally for 50 marks by PRC at the end of III semester
 - Research Methodology shall be evaluated internally for 50 marks by PRC at the end of III semester
 - Comprehensive Viva-Voce shall be evaluated internally for 50 marks by PRC in the III semester
 - Seminar shall be evaluated internally for 50 marks by PRC in the III semester
 - Project phase I which includes Problem definition, Literature survey, tool specific knowledge shall be evaluated internally for 100 marks by PRC at the end of III semester
 - Project phase II shall be evaluated for 300 marks at the end of IV semester. Out of 300 marks, 150 marks shall be evaluated internally by PRC and remaining 150 marks shall be evaluated externally by the internal and external examiner.
 - The evaluation of Project phase II shall be made on the following aspects.
 - i) Experimental/methodology design
 - ii) Result analysis and interpretations
 - iii) Report writing
 - iv) Presentation
 - v) Viva-voce

6. ATTENDANCE REGULATIONS:

- I. A student shall be eligible to appear for end semester examinations, if he or she acquires a minimum of 75% of attendance in aggregate of all the subjects (Theory & Lab.) for the semester.
- II. A Student shall not be promoted to the next semester unless he/she fulfills the attendance requirement of the current semester.
- III. A student may seek re- admission for that semester when offered a least one week ahead of the commencement of class work.
- IV. To appear for end laboratory examination a candidate shall put up a minimum of 75% attendance for regular lab sessions and should have completed all the laboratory experiments/tests along with submission of record complete in all respects.

7. MINIMUM ACADEMIC REQUIREMENTS:

A student is deemed to have satisfied the minimum academic requirements if he has earned the credits allotted and secures at least 24 marks out of 60 marks at semester end examination and overall 50 marks out of 100 marks put together both internal and semester end examinations.

8. COURSE STRUCTURE:

M.TECH:

The total course will consist of the following components.

a)	Core Mandatory(Theory)	CM	21-27 credits
b)	Core Mandatory(Lab)	CM(L)	02-06 credits
c)	Core Elective (Theory)	CE(T)	15-21 credits
d)	Comprehensive Viva voce	CV	01-03 credits
e)	Self Study(Prerequisite)	SS	01-03 credits
f)	Seminar	SE	01-03 credits
g)	Research methodologies	RM	01-02 credits
h)	Project phase 1	PR	06-12 credits
i)	Project phase 2	PR	09-15 credits

*For all the programs offered, in the list of courses for electives one of the choices would be "MOOCs". Each department shall short list MOOCs course/(s) meeting the requirements of course duration, credits, etc., from time to time. The same shall be placed in the immediate BoS meeting for ratification.

9. ABOUT GRADING SYSTEM:

Performance of a student is evaluated in terms of earned credit weighed marking system Earned credits are defined as the sum of course credits in which grade points above a certain cut off have been obtained for declaring student pass in that course • Points earned in a semester:

Σ (course credits earned x Grade points)

Semester Grade Point Average (SGPA) for the current semester which is calculated on the basis of grade points obtained in all courses, except audit courses and courses in which satisfactory or course continuation has been awarded,

SGPA= Σ (course credits earned x Grade points) / Σ (Total course credits in the semester.

Cumulative Grade Point Average (CGPA) is calculated on the basis of all pass grades obtained in all courses, except audit courses, obtained in all completed semesters

CGPA= Σ (course credits earned x Grade points) over all semesters / Σ (Total course credits in all the semesters.

The UGC recommends a 10-point grading system with the following letter grades as given below:

Ο	(Outstanding)	10
A+	(Excellent)	9
А	(Very Good)	8
B+	(Good)	7
В	(Above Average)	6
С	(Average)	5
Р	(Pass)	4
F	(Fail)	0
Ab	(Absent)	0

• iii. A student obtaining Grade F shall be considered failed and will be required to reappear in the examination.

Illustration of Computation of SGPA and CGPA and Format for Transcripts Computation of SGPA and CGPA

Illustration	for SGPA
--------------	----------

Course	Credit	Grade	Grade	Credit Point
		Letter	point	(Credit x Grade)
Course 1	3	А	8	3 X 8 = 24
Course 2	4	B+	7	4 X 7 = 28
Course 3	3	В	6	$3 \times 6 = 18$
Course 4	3	0	10	$3 \times 10 = 30$
Course 5	3	С	5	3 X 5 = 15
Course 6	4	В	6	$4 \ge 6 = 24$
	20			139
		Thus, SGPA $=13$	39/20 = 6.95	

Illustration for CGPA

Semester 1	Semester 2	Semester 3	Semester 4
Credit: 20	Credit: 22	Credit: 25	Credit: 26
SGPA: 6.9	SGPA: 7.8	SGPA: 5.6	SGPA: 6.0

Thus, **CGPA** = $20 \times 6.9 + 22 \times 7.8 + 25 \times 5.6 + 26 \times 6.0$

80

= 7.57

10. ELIGIBILITY FOR AWARD OF DEGREE:

A student shall be eligible for award of the degree if he/she fulfills the following conditions:

- 1) Success fully completes all the courses prescribed for the Program.
- 2) CGPA greater than or equal to 5.5(Minimum requirement for Pass),
- 3) Should have cleared all dues.
- 4) Complied with all the rules and regulations during the period of study governing satisfactory conduct.

11. AWARD OF CLASS:

The candidates who are eligible for the award of M.Tech./MBA Degree shall be placed in one of the following Classes based on CGPA.

Class	CGPA
Distinction	≥ 7.5
First Class	\geq 6.5
Pass Class	≥ 5.5

12. INSTRUCTION DAYS: A semester shall have a minimum period of 90 clear instruction days.

13. SUPPLEMENTARY EXAMINATIONS:

Supplementary examinations shall be conducted along with regular examinations for every semester.

- 14. WITHHOLDING OF RESULTS: The result of the student will be withheld
 - If the student has not paid the dues, if any, to the institution
 - If any case of pending of disciplinary action against him,
 - Involving in any sort of malpractices etc.

15. TRANSITORY REGULATIONS:

- A candidate joining the institution on transfer from other institutions shall submit a record/history of courses of semesters already completed elsewhere prior to seeking such transfer.
- Board of Studies of the department may accept/reject such request for transfer depending on compatibility of the program.

- For accepted cases, the Board of Studies shall recommend equivalency of courses and also additional equivalent (substitute) courses if any to be taken up for the award of degree for all prospective courses leading to the completion of the program.
- Only candidates who have fulfilled the academic/course work requirements up to the previous semester shall only be considered for admission on transfer.
- Student seeking transfer has to clear all his/her backlog subjects of previous semesters by appearing the supplementary examinations, conducted by the affiliated/other university.
- Admission on transfer may be taken only on the payment of prescribed fee prevailing at the time.

16. AMENDMENTS TO REGULATIONS:

The Academic Council of MVGR College of Engineering (Autonomous) reserves the right to revise, amend, change or nullify the Regulations, Schemes of Examinations, and/ or Syllabi or any other such matter relating to the requirements of the program which are compatible to the contemporary/emerging trends effectively meeting the needs of society/industry/stake holding groups.

17. Guide lines for MALPRACTICES during the conduct of examinations

	Nature of Malpractices/Improper conduct	Punishment
1 (a)	If the candidate possesses or keeps accessible in examination hall, any paper, note book, programmable calculators, Cell phones, pager, palm computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in the subject of the examination)	Expulsion from the examination hall and cancellation of the performance in that subject only. *
(b)	If the candidate gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.	Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.
2	If the candidate has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the candidate is appearing.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted to appear for the remaining examinations of the subjects of that Semester/year. The Hall Ticket of the candidate is to be cancelled.

		*
3	If the candidate impersonates any other candidate in connection with the examination.	The candidate who has impersonated shall be expelled from examination hall. The candidate is also debarred and forfeits the seat. The performance of the original candidate, who has been impersonated, shall be cancelled in all the subjects of the examination (including practicals and project work) already appeared and shall not be allowed to appear for examinations of the remaining subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. If the imposter is an outsider/candidate not on rolls, he will be handed over to the police and a case is registered against him. * Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester. He shall be debarred from class work and all examinations and be allowed to reregistered for the next subsequent odd or even semester only. The continuation of the course by the candidate is subject to the academic regulations in connection with
		forfeiture of seat.*
5.	Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.	The same should be brought to the notice of CE who in turn in consultation with malpractice committee makes decision for cancellation of the performance in that subject.
6.	Refuses to obey the orders of the Chief Superintendent/Assistant – Superintendent / any	In case of students of the college, they shall be expelled

	officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in charge or any person on duty in or outside the examination hall of any injury to his person or to any of his relations whether by words, either spoken or written or by signs or by visible representation, assaults the officer-in-charge, or any person on duty in or outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which result in damage to or destruction of property in the examination hall or any part of the College campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination.	from examination halls and cancellation of their performance in that subject and all other subjects the candidate(s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the subjects of that semester. The candidates also are debarred and forfeit their seats. In case of outsiders, they will be handed over to the police and a police case is registered against them. *
7.	Leaves the exam hall taking away answer script or	Expulsion from the examination
0	neterionally tears of the script or any part thereof inside or outside the examination hall.	hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. *
8.	Possess any lethal weapon or firearm in the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including
		practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat. *
9.	If student of the college, who is not a candidate for the particular examination or any person not	Student of the colleges expulsion from the examination hall and

	connected with the college indulges in any	cancellation of the performance
	malpractice or improper conduct mentioned in	in that subject and all other
	clause 6 to 8	subjects the candidate has
		already appeared including
		practical examinations and
		project work and shall not be
		permitted for the remaining
		examinations of the subjects of
		that semester. The candidate is
		also debarred and forfeits the
		seat.
		Person(s) who do not belong to
		the College will be handed over
		to police and, a police case will
		be registered against them. *
10	Comes in a drunken condition to the examination	Expulsion from the examination
	hall.	hall and cancellation of the
		performance in that subject and
		all other subjects the candidate
		has already appeared including
		practical examinations and
		project work and shall not be
		permitted for the remaining
		examinations of the subjects of
		that semester. *
11	Copying detected on the basis of internal evidence,	Cancellation of the performance
	such as, during valuation or during special	in that subject and all other
	scrutiny.	subjects the candidate has
		appeared including practical
		examinations and project work
		of that semester/year
		examinations.*

18. General :

- Wherever the words "he", "him", "his", occur in the regulations, they include "she", "her", "hers".
- The academic regulation should be read as a whole for the purpose of any interpretation.
- In the case of any doubt or ambiguity in the interpretation of the above rules, the decision of the Vice-Chancellor is final.
- The University may change or amend the academic regulations or syllabi at any time and the changes or amendments made shall be applicable to all the students with effect from the dates notified by the University.

In Case of Emergency CALL TOLL FREE NO. : 1800 - 425 - 1288

LET US MAKE MVGR A RAGGING FREE CAMPUS

- 1. Ragging is prohibited as per Act 26 of A.P. Legislative Assembly, 1997.
- 2. Ragging entails heavy fines and/or imprisonment.
- 3. Ragging invokes suspension and dismissal from the College.
- 4. Outsiders are prohibited from entering the College and Hostel without permission.
- 5. Girl students must be in their hostel rooms by 7.00 p.m.
- 6. All the students must carry their Identity Cards and show them when demanded
- 7. The Principal and the Wardens may visit the Hostels and inspect the rooms any time.

M.Tech (STRUCTURAL ENGINEERING)

Programme Educational Objectives

PEO 1 Impart knowledge to students in the latest technological aspects of Structural Engineering and to provide them with opportunities in taking up advanced topics of the field of study.

PEO 2 Mould the graduate Civil Engineers to undertake safe, economical and sustainable design of civil and other structures.

PEO 3 Broaden and deepen their capabilities in experimental research methods, analysis of data, and drawing relevant conclusions for scholarly writing and presentation.

PEO 4 Create a congenial environment that promotes learning, growth and imparts ability to work with inter-disciplinary teams in professional, industry and research organizations.

Programme Outcomes

a) Ability to Design, analyze, and evaluate systems in Structural Engineering

b) Ability to critically assess the relevant technological issues.

c) Ability to conduct experimental and/or analytical work and analyse results using modern mathematical and scientific methods.

d) Ability to formulate and report relevant research problems and critically assess research of their own and of others.

COURSE STRUCTURE

SEMESTER -I

Sl.	Course	Subject -		rs/we	ek	Credits
No.	Code			Τ	Р	С
1	A1STT101	Advanced Mathematics	3	0	0	3
2	A1STT102	Theory of Elasticity	3	1	0	4
3	A1STT103	Advanced Reinforced Concrete	3	1	0	4
4	A1STT14	Structural Dynamics and Earthquake	3	1	0	4
4		Resistant Design	5	1	U	4
Elective –I						
5	A1STT201	Advanced Structural Analysis	3	0	0	3
5	A1STT202	Industrial Structures	3	0	0	3
	A1STT203	Advanced Concrete Technology	3	0	0	3
		Elective – II				
6	A1STT204	Design of Tall Structures	3	0	0	3
	A1STT205	Disaster Management	3	0	0	3
	A1STT206	Theory of Plates and Shells	3	0	0	3
7	A1STL101	Advanced Structural Engineering lab	0	0	3	2
		Total Number of Credits				23

SEMESTER –II

Sl.	Course	Subject	Ho	urs/We	eek	Credits		
No.	Code	Subject	L	Т	Р	С		
1	A1STT105	Substructure Design	3	0	0	3		
2	A1STT106	Finite Element method	3	1	0	4		
3	A1STT107	Stability of Structures	3	1	0	4		
4	A1STT108	Prestressed Concrete	3	1	0	4		
		Elective –II	Ι					
5	A1STT207	Structural Optimization	3	0	0	3		
5	A1STT208	Bridge Engineering	3	0	0	3		
	A1STT209	Repair and Rehabilitation of Structures	3	0	0	3		
		Elective – IV						
	A1STT210	Structural Reliability	3	0	0	3		
6	A1STT211	Design of Hydraulic Structures	3	0	0	3		
	A1STT212	Plastic analysis and Design of Steel	3	0	0	2		
		Structures	5	0	0	5		
8	A1STL102	Computer Applications in Structural	0	0	3	2		
0		Engineering Laboratory	0	0	5			
		Total Number of Credits				23		

SEMESTER – III

Sl.	Course	Subject				Credits
No	Code		L	Т	Р	
1	A1STT109	Research Methodologies	-	-	-	2
2	A1STV401	Comprehensive Viva	-	-	-	2
3	A1STR401	Pre-requisite Study	-	-	-	2
4	A1STS501	Seminar	-	-	-	2
5	A1STP501	Project Phase - I	-	-	-	8
Total l	Number of Cre	dits	-	-	-	16

SEMESTER – IV

Sl.	Course	Subject	L	Т	Р	Credits
1	A1STP502	Project Phase - II	-	-	-	18
Total Number of Credits			-	-	-	18

SYLLABUS

		L	Т	Р	С		
A1STT101	ADVANCED MATHEMATICS	3	0	0	3		
	Total Contact Hours – 3(L)/W						
	Prerequisite : Mathematics I,II,III						
COURSE OBJECTIVES							
COB 1	Understand wave equations and solve them analytically						
COB 2	Understand Numerical methods to solve Non-linear simultaneous equations						
COB 2	Impart methods to analyze, estimate and correlate the data by evaluating the						
COB 2	coefficients and then testing the hypothesis regarding the variances.						
COB 3	Formulate Linear and Non-linear programming problems and solve them						

UNIT I

APPLIED PARTIAL DIFFERENTIAL EQUATIONS

One-dimensional Wave equation. Two-dimensional wave Equation in Cartesian, and polar coordinates (problems having axi-symmetry) – Analytical solution by separation of variables technique.

UNIT II

NUMERICAL METHODS

Solution of Non linear simultaneous equations –Newton Raphson method. Determination of Eigen values by Iteration method-Rayleigh's Power method. One dimensional Wave Equation in Cartesian coordinates using finite – differences.

UNIT III

APPLIED STATISTICS

Regression and correlation analysis – Method of Least squares – Curve fitting – Curvilinear Regression – Non-linear curves – correlation coefficient – Correlation of grouped bi-variate data – coefficient of determination Multiple Regression – partial Regression coefficients.

UNIT IV

LINEAR PROGRAMMING PROBLEMS

Linear Programming Problem Formation- Graphical Method, Simplex method, artificial variable method –Big M method, Two phase method.

UNIT V

NONLINEAR PROGRAMMING PROBLEMS

Non Linear Programming Problem- Gradient method, Steepest Ascent Descent Methods.

TEXT BOOKS

- 1. Advanced Engineering Mathematics- Erwin Kreyszig, 9th edition, Wiley India.
- 2. Solutions of Partial Differential Equations" Duffy, D.G. CBS Publishers, 1988
- 3. Introductory Methods of Numerical Analysis Sastry, S.S. Prentice-Hall, 2ndEdition, 1992
- 4. Basic Statistics Agarval, B.L., Wiley 1991, 2nd edition.
- 5. Optimization Techniques. S.S.Rao.

REFERENCES

1. Operations Research – Hamdy A, Taha.

2. Advanced Engineering Mathematics- Dennis G.Zill , Michael R. Cullen ,CBS Publishers 2nd edition.

Higher Engineering Mathematics – B.S.Grewal, 42nd/edition, Khanna Publishers
 Strang.G, Introduction to Applied Mathematics, Willey

COURSE OUTCOMES					
CO 1	Ability to solve wave equations analytically				
CO 2	Ability to Numerical methods to solve Non-linear simultaneous equations				
CO_3	Ability to ana	Ability to analyze, estimate and correlate the data by evaluating the coefficients and			
05	then testing the hypothesis regarding the variances.				
CO 4	Ability to formulate Linear and Non-linear programming problems and solve them				
		ADVANCED MATHEMATICS			
Course	designed by	S & H Department			
Approval		Approved by: Meeting of Board of Studies held on 13 th June, 2015			
		Ratified by: 1 st Meeting of Academic Council, 27 th June, 2015			

		L	Τ	Р	С		
	THEORY OF ELASTICITY	3	1	0	4		
A1STT102	Total Contact Hours $- 3(L) + 1(T)/W$						
	Prerequisites : Mathematics, Strength of Materials						
COURSE OBJECTIVES							
COP 1	Formulate the conditions of theory of elasticity application and apply them to						
COBI	solve real world problems of linear elasticity using boundary value concept						
COP 2	Develop stress-strain relationships using stress tensor and transformation in						
COB 2	elastic state.						
COP 2	Execute a reasonable choice in parameters of the model (geometry, material						
COB 5	properties, boundary conditions)						
COB 4	Solve 2D and 3D problems of Elasticity						

ELASTICITY INTRODUCTION

Concept of stress and strain - Notation for forces and stresses - components of stresses and strains - Hooke's Law - Plane Stress - Plane strain - Differential Equations of equilibrium - Boundary conditions

UNIT II

TWO DIMENSIONAL PROBLEMS2D problems in rectangular co-ordinates Solution by Polynomials - Saint Venant's principle - Determination of displacements - Bending of simple beams - Application of Fourier series for two dimensional problems for gravity loading

UNIT III

POLAR COORDINATES

Two dimensional problems in polar co-ordinates - General equations in polar co-ordinates - Stress distribution for problems having symmetrical about an axis - Strain components in polar co-ordinates - Displacements for symmetrical stress distributions –Analysis of Axi-symmetric bodies subjected to axi-symmetric loading.

UNIT IV

ANALYSIS OF STRESS AND STRAIN IN THREE DIMENSIONS

Principal stresses- Stress ellipsoid-Director Surface, Homogenous Deformation, Principal Axis of Strain - Determination of principal stresses - Maximum shear stress

UNIT V

GENERAL THEOREMS

Differential equations of equilibrium - Conditions of compatibility – Equations of equilibrium in terms of displacements - Principle of superposition

TEXT BOOKS:

1. Timoshenko, S. and Goodier J.N., Theory of Elasticity, McGraw Hill Book Co, New york, 1988.

2. Irving H. Shames and James, M. Pitarresi, Introduction to Solid Mechanics, Prentice Hall of India Pvt. Ltd., New Delhi -2002.

REFERENCE BOOKS:

- Elasticity: Theory, Applications and Numerics Martin H. Sadd
 Theory of Elasticity, Sadhu Singh
 Continuum Mechanics, Dr. P. N Chandramouli

COUR	COURSE OUTCOMES				
CO 1	Ability to dev	velop stress-strain relationships using stress tensor and transformation in			
COT	elastic state.				
CO^{2}	Ability to for	mulate the conditions of theory of elasticity application and apply them			
02	to Solve real world problems of linear elasticity				
CO_{2}	Ability to execute a reasonable choice in parameters of the model (geometry,				
05	material prop	material properties, boundary conditions)			
CO 4	Ability to solv	ve problems of 2D and 3D problems of linear elasticity using boundary			
CO 4	value concept				
		THEORY OF ELASTICITY			
Course	designed by	CIVIL Department			
A		Approved by: Meeting of Board of Studies held on 13 th June, 2015			
Арргоу	/a1	Ratified by: 1 st Meeting of Academic Council, 27 th June, 2015			

		L	Τ	P	С		
A1STT103	ADVANCED REINFORCED CONCRETE	3	1	0	4		
	Total Contact Hours – 3(L) + 1(T)/W						
	Prerequisite : SM I & II ; DRCS – I & II						
COURSE O	COURSE OBJECTIVES						
COP 1	To be able to estimate the short term and long term deflections in structural						
COBI	elements along with the crack width						
COB 2	Design and carry out the reinforcement detailing of building frames						
COB 3	To be able to design Reinforced Concrete flat slab elements by different methods						
COB 4	To be able to understand the inelastic analysis of Reinforced Concrete beams,						
	columns and frames						

SERVICEABILITY

Short-term deflection of beams and slabs-Deflection due to imposed loads, Short-term deflection of beams due to applied loads, Calculation of deflection by IS 456: 2000, Deflection of slabs, Comparison of Deflections from Euro and ACICodes.

Estimation of Crack width in Reinforced Concrete Members-Factors affecting crack width in beams, Mechanisms of flexural cracking, Calculation of crack width,-Simple empirical method, Estimation of crack width in beams by IS 456:2000, Shrinkage and thermal cracking.

UNIT II

INELASTIC ANALYSIS OF REINFORCED CONCRETE BEAMS AND FRAMES

Inelastic behavior of reinforced concrete, Stress-strain characteristics of concrete, Stressstrain characteristics of steels, Moment curvature relation (M-Q Curves), Inelastic or nonlinear analysis of reinforced concrete beams.

UNIT III

BIAXIAL BENDING OF SLENDER COLUMNS

Definition of slender column, reasons for its increasing importance and popularity, behavior of eccentrically loaded slender columns, braced and un-braced single column or a part of rigid frame, moments due to minimum eccentricities in slender columns, design of slender columns as recommended by IS 456 and charts of SP-16, Development of interaction curves.

UNIT IV

APPROXIMATE ANALYSIS OF GRID FLOORS

Introduction to grid floors-Analysis of rectangular grid floors by Timoshenko's plate theory. Analysis of grid by stiffness matrix method, Analysis of grid floors by equating joint deflections. Detailing.

UNIT V

ANALYSIS AND DESIGN OF FLAT SLABS

Proportioning of flat slabs, Determination of bending moment and shear force, the direct design method, Equivalent frame method, slab reinforcement

TEXT BOOKS:

- 1. Design of Reinforced concrete structures N Subramanyam, oxford university press
- 2. "Reinforced Concrete Design" by UnnikrishnaPillai and DevdasMenon

REFERENCE BOOKS:

- 1. "Advanced Reinforced Concrete Design"by P.C. Varghese.
- 2. "Hand Book of Concrete Engineering" Fintel, Mark., Rein Hold New york 1995
- 3. "Reinforced Concrete Structural elements" Purushothaman ,Tata McGraw Hill 1994

COUR	COURSE OUTCOMES					
CO 1	Ability to cal	culate deflections and crack widths in reinforced concrete elements as				
	per relevant	per relevant standard codal provisions and design structural elements satisfying				
	serviceability	criteria.				
CO 2	Ability to de	termine Moment- Curvature relation for reinforced concrete flexural				
CO 2	members	members				
CO 3	Ability to des	ign slender reinforced concrete columns and develop interaction curves				
CO 4	Ability to des	ign Grid floors and flat slabs in reinforced concrete structures.				
		ADVANCED REINFORCED CONCRETE				
Course	designed by	CIVIL Department				
Approval		Approved by: Meeting of Board of Studies held on 13 th June, 2015				
		Ratified by: 1 st Meeting of Academic Council, 27 th June, 2015				

		L	Τ	P	С			
	STRUCTURAL DYNAMICS AND EARTHQUAKE	2	1	0	4			
A1STT104	RESISTANT DESIGN	Э	1	0	4			
	Total Contact Hours $- 3(L) + 1(T)$							
	Prerequisite : Mathematics ; EG							
COURSE C	BJECTIVES							
COP 1	To understand the principles of vibration with regard to Single and Multi degree							
COBI	of freedom system and perform dynamic analysis of structure.							
COP 2	To understand the effect of various irregularities in the structure for earthquake							
COB 2	response							
COP 3	To determine the design lateral forces due to earthquake using IS code							
COB 5	provisions.							
COB 4	To introduce the concept of ductility and corresponding detailing as per IS							
	code.							
COB 5	Design and ductile detailing of structures for seismic resistance as per Indian							
COB 2	Standards							

INTRODUCTION TO STRUCTURAL DYNAMICS

Introduction to Dynamic analysis - Types of loadings - Methods of Discretization -Formulation of the Equations of Motion - Elements of a Vibratory system - Free Vibrations of Single Degree of Freedom (SDOF) systems – Un-damped and Damped Systems - Degrees of Freedom of continuous systems

UNIT II

SINGLE DEGREE OF FREEDOM SYSTEM: (SDOF)

Formulation and Solution of the equation of Motion

Free vibration response - Response to Harmonic - Periodic- Impulsive and general dynamic loadings - Control Measures of SDOF

UNIT III

MULTI DEGREE OF FREEDOM SYSTEM: (MDOF)

Selection of the Degrees of Freedom, Evaluation of Structural Property Matrices, Formulation of the MDOF equations of motion, Un-damped free vibrations, Solution of Eigen value problem for natural frequencies and mode Shapes, Analysis of dynamic response - Normal coordinates.

UNIT IV

EARTH QUAKE ENGINEERING

Introduction- Effect of Irregularities in Structures - Earthquake response analysis of single and multi-storied buildings (seismic coefficient and Response spectrum methods- Base shear calculation). Model participations

UNIT V

CODAL DETAILING PROVISIONS

Review of the Indian Seismic codes IS: 1893, IS 4326 and IS 13920 provisions for ductile detailing of RC buildings- Beams, Columns and Joints – Shear walls detailing.

TEXT BOOKS:

1. Structural Dynamic by Mario Paz, 2nd edition,

2. Dynamics of Structures by Clough & Penzien.

3. PankajAgarwal and Manish Shirkande (2006): Earthquake Resistant Design of Structures, Prentice Hall of India

REFERENCE BOOKS:

1. Dynamics of Structures, "Theory and Applications to Earthquake Engineering" by Anil K. Chopra, Prentice Hall of India.

2. Structural Dynamics by John M. Biggs.

3. Elements of Earthquake Engineering by Jaikrishna and Chandrasekhara Saritha Prakasham, Meerut.

COURSE OUTCOMES							
CO 1	Ability to carry out Dynamic analysis of structures with Single and Multi degree of						
COT	freedom						
CO^{2}	Ability to p	lan the structure without irregularities which affect their seismic					
CO 2	performance.						
CO3	Ability to ca	Ability to calculate the seismic loads on structures and design the structure					
05	accordingly.						
CO 4	Ability to do the ductile detailing of different members of the structure as per IS						
CU 4	13920.						
S	TRUCTURA	L DYNAMICS AND EARTHQUAKE RESISTANT DESIGN					
Course designed by		CIVIL Department					
Annuoval		Approved by: Meeting of Board of Studies held on 13 th June, 2015					
Арргоу	ai	Ratified by: 1 st Meeting of Academic Council, 27 th June, 2015					

		L	Τ	P	С	
A1STT202	INDUSTRIAL STRUCTURES	3	0	0	3	
	Total Contact Hours – 46					
	Prerequisite : DRCS ; DSS					
COURSE OBJECTIVES						
COP 1	To impart the knowledge on planning and functional requiremen	t of	ind	usti	ial	
COBI	structures					
COR 2	To make the student understand calculation of wind loads and comp	plete	des	sign	of	
COB 2	trusses					
COB 3	To impart design aspects of Gantry girder, Bunkers, silos, C	Chim	ney	s a	nd	
	transmission line towers.					

UNIT NO.1

PLANNING AND FUNCTIONAL REQUIREMENTS –Classification of industries and industrial structures - Planning for layout- requirements regarding lighting ventilation and fire safety - protection against noise and Vibrations

UNIT NO.2

TRUSS STRUCTURES: (NON- VIBRATING) - Calculation of Wind loads as per IS875-Analysis and Design of different types of Roof Trusses, Analysis and design of Purlins & bracing systems in industrial sheds. Introducing vibrating trusses and Cold Formed structural steel.

UNIT NO.3

Industrial buildings (Steel) – Design of Gantrygirders, Introduction to PEB (Pre Engineering Building)

UNIT NO.4

Analysis and Design of Bunkers, Silos and Chimneys

UNIT NO.5

POWER TRANSMISSION STRUCTURES: Transmission line towers – tower foundations – testing of towers

TEXT BOOKS

- 1. Advanced reinforced concrete design-N. Subramaninam, Oxford.
- 2. Tall Chimneys- Design and construction S.N. Manohar

Reference Books:

- 1. Advanced Reinforced Concrete Design N.KrishnaRaju, CBS Publishers
- 2. Design of Steel Structures S.K.Duggal Tata McGraw-Hill. Publications
- 3. Space Structures N.Subrahmanyam

COURSE OUTCOMES									
CO 1	Ability to knowledge plan functional requirement of industrial structures								
CO 2	Ability to calculate wind loads and design a trusses								
CO^{2}	Ability to design Gantry girder, Bunkers, silos, Chimneys and transmission line								
05	towers.								
		INDUSTRIAL STRUCTURES							
Course designed by		CIVIL Department							
Approval		Approved by: Meeting of Board of Studies held on 13 th June, 2015							
		Ratified by: 1 st Meeting of Academic Council, 27 th June, 2015							

		L	Τ	P	С					
A1STT203	ADVANCED CONCRETE TECHNOLOGY	3	0	0	3					
	Total Contact Hours – 46									
	Prerequisite : Concrete Technology									
COURSE OBJECTIVES										
COB 1	To understand the Properties of concrete and use additives and admixtures.									
COB 2	To understand about various special concretes used for special purposes									
COB 3	To understand the significance of NDT evaluation of concrete and various									
	methods for it									

UNIT 1

ANALYSIS OF USING NEW MATERIALS, RECYCLING AND REUSE

Different Types of Materials blended with cement – Pozzolana cement, reaction hydration with supplementary cementious materials, admixtures and additives- Properties effecting the Materials - Chemical Reaction with other materials, IS 10262 Mix design

UNIT 2

SPECIAL CONCRETES FIBER REINFORCED CONCRETE

Properties of constituent materials- Mix proportions, mixing and casting methods-Mechanical properties of fiber reinforced concrete - Applications of fiber reinforced concretes

LIGHT WEIGHT CONCRETE

Properties of light weight concrete - Design of light weight concrete - Applications of Light weight concrete

No fines concrete- Properties and applications

UNIT 3

HIGH PERFORMANCE CONCRETE

Introduction - Development of high performance concretes - Materials of high performance - Properties of high performance concretes

Self Consolidating concrete

Introduction - Properties - Applications - Mix design of SCC

UNIT 4

NON DESTRUCTIVE EVALUATION

Importance of these Methods – Rebound hammer, Ultrasonic pulse velocity test, Concrete behavior under corrosion - Disintegrated mechanisms - Moisture effects and thermal effects - Visual investigation- Acoustical emission methods- Corrosion activity measurement- chloride content

UNIT 5

Durability: Factors affecting durability of concrete, tests on durability with special reference to Rapid chloride permeability Test.

TEXT BOOKS

- 1. R. Santhakumar' Concrete Technology', Oxford University Press 2 P.K Mehta.
- 2. Concrete technology- Neville & Brooks

REFERENCE BOOKS:

- 1. Mehta and Monteiro, 'Concrete-Micro structure, Properties and Materials', McGraw Hill Professional
- 2. Concrete repair and maintenance Illustrated- Peter H Emmons
- 3. Neville, 'Properties of Concrete', Prentice Hall, Newyork

4. John Newman and Ban SengChoo, 'Advanced Concrete Technology', Butterworth-Heinemann Ltd.

COUR	COURSE OUTCOMES							
CO 1	Ability to use of new materials in Concretes and understand how they affect the							
COT	properties of concrete							
CO^{2}	Ability to und	lerstand the merits and demerits and manufacturing procedures of						
02	various special concretes used for special purposes							
CO 3	Appreciate RMC MIX design for special concrete							
CO 4	Appreciate need for NDT evaluation of concrete and have knowledge on the							
CO 4	working principle of some of the methods.							
ADVA	ADVANCEDCONCRETE TECHNOLOGY							
Course designed by		Civil department						
Approval		Approved by: Meeting of Board of Studies held on 13 th June, 2015						
Арргоч	al	Ratified by: 1 st Meeting of Academic Council, 27 th June, 2015						

		L	Т	Р	С						
A 1STT201	ADVANCED STRUCTURAL ANALYSIS	3	0	0	3						
AIST1201	Total Contact Hours $- 3(L) + 1(T)/W$										
	Prerequisite : SA- I & II										
COURSE C	COURSE OBJECTIVES										
COB 1	Analyze and evaluate systems in structural engineering using force										
COB 2	Analyze and evaluate systems in structural engineering using displacement										
COD 2	method										
COB 3	To Apply Various Methods of approximate analysis of structures										
COB 4	To give an idea of stiffness methods of analysis for different members										

Approximate Methods of Analysis for Vertical and Lateral Loads:

1. Portal Method 2.Cantilever Method 3.Substitute Frame Method

UNIT II

Torsional behavior of Non-Circular Section, Analysis of Open Section, Concept of unsymmetrical Bending and shear centre.

UNIT III

INTRODUCTION TO MATRIX METHODS OF ANALYSIS

Difference between Flexibility and Stiffness method and their suitability for different structures – Element stiffness matrix for truss element, beam element and Torsional element-Element Force displacement equations- Element and Global Stiffness equation – coordinate transformation and global assembly-Structure Stiffness matrix.

UNIT IV

ANALYSIS OF BEAMS AND PLANE FRAMES BY STIFFNESS METHOD

Coordinate Transformation. Example problems (up to degree of Static Indeterminacy)

UNIT V

PLANE TRUSS AND SPACE TRUSS BY STIFFNESS METHOD

Coordinate Transformation Example problems (up to degree of Static Indeterminacy)

TEXT BOOKS:

- 1. Intermediate Structural Analysis- C. K. Wang
- 2. Advanced Structural Analysis Sinha and Gayen

REFERENCE BOOKS:

- 1. Structural analysis A matrix approach by Pandit& Gupta, TMH Publisher
- 2. Indeterminate Structures: J.S.Kinney
- 3. Limit Analysis of Structures: Manikaselvam, DhanpatRai Publishers

COURSE C	COURSE OUTCOMES						
CO 1	Ability to carry out approximate analysis of framed structures.						
CO 2	Ability to analyze non circular sections for torsion						
CO 3	Ability to choose appropriate method of analysis for given structure						
CO 4	Ability to analyze plane frame, plane truss and space truss using stiffness						
	method of analysis						

	ADVANCED STRUCTURAL ANALYSIS
Course designed by	CIVIL Department
Approval	Approved by: Meeting of Board of Studies held on 13 th June, 2015
Appiovai	Ratified by: 1 st Meeting of Academic Council, 27 th June, 2015

		L	Τ	Р	С					
A 10TT204	DESIGN OF TALL STRUCTURES	3	1	0	4					
A1511204	Total Contact Hours $- 3(L) + 1(T)/W$									
	Prerequisite : DRCS ; DSS									
COURSE O	COURSE OBJECTIVES									
COP 1	Understand and solve, using both analytical and numerical methods, partial									
COBI	differential equations with their physical relevance									
COR 2	Analyze, estimate and correlate the data by evaluating the coeffic	cient	s an	nd th	ien					
COB 2	testing the hypothesis regarding the variances.									
	Become competent enough to work on multidisciplinary team	ns a	nd	desi	gn					
COB 3	systems to meet desired needs with in economic, s	socia	al,	safe	ety					
	manufacturability and sustainability constraints.									

Structural systems and concepts.

Design Criteria Philosophy, Materials, Modern concepts.

UNIT II

Loads – IS Code Provision

Gravity Loading – Dead Load, Live Load, Impact Load, Construction load, Sequential loading IS875 Part1

Wind Loading – Static and Dynamic approach, Analytical Method, Wind tunnel experimental methods. IS875 Part2

Earthquake Loading – Equivalent Lateral load analysis,

Response spectrum method, **IS875 Part3**

Combination of loads

UNIT III

Behavior of Structural Systems

Factors affecting the growth, height and structural form, Behavior of braced frames, Rigid frames, In-filled frames, Shear walls, Coupled shear walls, Wall frames, Tubular, Outrigger braced, hybrid systems

UNIT IV

Analysis and Design

Modeling for Approximate analysis, Accurate analysis and reduction techniques, Analysis of structures as an integral unit, Analysis for member forces, drift and twist. Design for differential movement, Creep and Shrinkage effects, Temperature effects.

UNIT V

Stability Analysis

Overall buckling analysis of frames, Approximate methods, P-Delta effects, simultaneous first order and P-Delta analysis, Introduction Translational instability, Torsional instability. Importance of dampers.

TEXT BOOKS:

1. Bryan Stafford Smith and Alex Coull, "Tall Building Structures – S.K. Ghose. Analysis and Design", John Wiley and Sons, Inc., 1991.

2. Taranath B.S, "Structural Analysis and Design of Tall Buildings", McGraw-Hill, 1988.

REFERENCE BOOKS:

1. Tall building structures by B.S.Smith and A.Coull, John Wiley & Sons, 1991.

COUR	SE OUTCOMES
CO 1	Ability to understand modern concepts evolved in structural systems.
CO^{2}	Ability to apply IS codal provisions for various types of loadings for tall
02	structures.
CO 3	Ability to understand and differentiate various types of building frames and
05	shear walls.
CO 4	Ability to analyse using different techniques and design a tall structure for
CO 4	differential movement, Creep and Shrinkage effects, Temperature effects.
CO 5	Ability to analyse a tall structure for its buckling and ability to perform first
05	order and P-Delta analysis.
CO 6	Ability to understand Translational instability, Torsional instability Importance
	of dampers.

DESIGN OF TALL STRUCTURES								
Course designed by	CIVIL Department							
Approval	Approved by: Meeting of Board of Studies held on 13 th June, 2015							
Аррготаг	Ratified by: 1 st Meeting of Academic Council, 27 th June, 2015							

		L	Т	Р	С						
A 10TT205	DISASTER MANAGEMENT	3	1	0	4						
A1511205	Total Contact Hours $- 3(L) + 1(T)/W$										
	Prerequisite : Environmental Science										
COURSE OBJECTIVES											
COP 1	To increase the knowledge and understanding of the disaster phenomenon, its										
COBT	different contextual aspects, impacts										
COR 2	To ensure knowledge and skills to design, implement and evaluate research on										
COB 2	disasters										
COB 3	To develop an integrated approach to disaster preparedness & awareness.										
COB 4	To understand the requirements of an emergency management program.										

Environmental Hazards and Disasters

Concept of Environmental Hazards, Environmental stress & Environmental Disasters, Approaches & relation with human Ecology, Human ecology & its application, Types of Environmental hazards & Disasters

UNIT II

Disasters

Natures and extent of disasters, Natural calamities, manmade disasters

UNIT III

Emerging approaches in Disaster Management

Natural Disaster Reduction & Management, Relief measures to disaster affected people, Prediction of Hazards & Disasters, Measures of adjustment to natural hazards

UNIT IV

Disaster Management

An integrated approach for disaster preparedness, Mitigation & awareness, Financing relief expenditure, legal aspects, Rescue operations, Casually management, Risk management.

UNIT V

Emergency Management program

Administrative setup and organization, Hazard analysis, Training of personnel, Information management, Emergency facilities and equipment necessary public awareness creation, Preparation and execution of the emergency management

TEXT BOOKS:

- 1. R.B.Singh (Ed) Environmental Geography, Heritage Publishers New Delhi, 1990
- 2. Savinder Singh Environmental Geography, PrayagPustakBhawan, 1997
- 3. R.B. Singh (Ed) Disaster Management, Rabat Publication, New Delhi, 2000

REFERENCE BOOKS:

1. H.K. Gupta (Ed) Disaster Management, Universities Press, India, 2003

2. R.B. Singh, Space Technology for Disaster Mitigation in India (INCED), University of Tokyo, 1994

3. Dr. Sat ender , Disaster Management in Hills, Concept Publishing Co., New Delhi, 2003

4. R.K.	Bandana	An	overview	on	Natural	&	Manmade	Disaster	&	their	Reduction,	CSIR,
New De	lhi											

COURSE OUTCOMES							
CO 1	Ability to understand of the disaster phenomenon and its different contextual						
	aspects, impacts						
CO 2	Ability to design, implement and evaluate research on disasters						
CO 3	Ability to develop an integrated approach to disaster preparedness & awareness.						
CO 4	Ability to understand the requirements of an emergency management program.						

DISASTER MANAGEMENT				
Course designed by	CIVIL Department			
Approval	Approved by: Meeting of Board of Studies held on 13 th June, 2015			
Аррготаг	Ratified by: 1 st Meeting of Academic Council, 27 th June, 2015			

A1STT206		L	Τ	P	С
	THEORY OF PLATES AND SHELLS	3	1	0	4
	Total Contact Hours $- 3(L) + 1(T)/W$				
	Prerequisite : Mathematics				
COURSE O	BJECTIVES				
COB 1	Introduce students to the classical structural mechanics appro-	oxir	natio	ons	of
CODI	Membrane, Plate and Shell theories				
COB 2	Use energy formulations to demonstrate the consistent	deri	vati	on	of
approximate boundary conditions and edge effects.					
COB 3	Demonstrate the approximation of the classical formulations us	ing	nun	neri	cal
	approximation techniques.				

Plate equation and behaviour of thin plates in Cartesian - Isotropic and orthotropic plates - Bending and twisting of plates.

UNIT II

Navier's solution and energy method - Rectangular, Circular plates with various end conditions.

UNIT III

Plate Equation and analysis of Polar Coordinates - Circular Plate with Different end Condition

UNIT IV

Introduction to Shells

Single and double curvature- Equations of Equilibrium of Shells - Derivation of stress resultants - Principles of membrane theory and bending theory.

Shell behaviour - shell surfaces and characteristics - classifications of shells - Equilibrium equations in curvilinear coordinates - Force displacement relations.

UNIT V

Principles of membrane Theory and Bending Theory

Membrane analysis and bending theory of shells of revolution - cylindrical shells under different loads - solutions of typical problems

TEXT BOOKS:

1. Theory of Plates and Shells – Timoshenko and Krieger, Tata McGraw-Hill, New Delhi.

2. Theory of Plates, K. ChandraShekhara, University Press, 2001.

3. Design and Construction of Concrete Shell Roofs – Ramaswamy, G.S, McGraw – Hill, New York.

REFERENCE BOOKS:

1. A Text Book of Plate Analysis - Bairagi, K, Khanna Publisher, NewDelhi.

COURSE C	UTCOMES
CO 1	Ability to analyze isotropic and orthotropic plates subjected to bending and
	twisting.
CO^2	Ability to conceptualize the Navier's solution and energy method to analyze
002	plates with different end conditions.
CO 3	Ability to develop governing differential equation for circular plates and
005	analyze for various loading and boundary conditions.
CO 4	Ability to understand the structural behaviour of different types of shells using
04	membrane theory and bending theory.
CO 5	Ability to analyze isotropic and orthotropic plates subjected to bending and
	twisting.

THEORY OF PLATES AND SHELLS				
Course designed by	CIVIL Department			
Approval	Approved by: Meeting of Board of Studies held on 13 th June, 2015			
Appioval	Ratified by: 1 st Meeting of Academic Council, 27 th June, 2015			

		L	Т	P	С	
	ADVANCED STRUCTURAL ENGINEERING LAB	3	1	0	4	
A1STL101	Total Contact Hours $- 3(L) + 1(T)/W$					
	Prerequisite : SM, CT, CT Lab	Prerequisite : SM, CT, CT Lab				
COURSE O	BJECTIVES					
COB 1	Aware of flexural and shear behavior of RC beams and their crack	k pat	ttern	1		
COB 2	Understand the stress-strain behavior of different grades of concrete					
COB 3	Know the Mix design and workability tests of self compacting concrete					
COB 4	Understand various repair techniques of RC elements					
COP 5	To make the student know about various Non Destructive T	`esti	ng	of I	RC	
COBJ	elements					

LIST OF EXPERIMENTS:

- 1. Stress-Strain behavior of different grades of concrete
- 2. Shear behavior of RC beams for different Shear reinforcements
- 3. Flexural behavior of RC beams for different amounts flexural reinforcement
- 4. Preparation and workability tests on self compacting concrete
 - Flow test
 - L-box test
 - V-Funnel test
- 5. Measurement of Strain in Concrete and Steel using Strain gauges
- 6. Retrofitting of RC elements
- 7. Design and testing of RC beam for Capacity, Cracking pattern, Ductility etc.,
- 8. Non Destructive Testing of concrete using
 - Rebound Hammer
 - Ultra Sonic Pulse Velocity
- 9. Case study on condition assessment of distressed structures

Note: Any eight exercises have to be conducted

COURSE OUTCOMES				
CO 1	Ability to study flexural and shear behavior of RC beams and their crack pattern			
CO 2	Appreciate stres	s-strain behavior of different grades of concrete		
CO 3	Perform Mix des	sign and workability tests of self compacting concrete		
CO 4	Skill to apply va	rious repair techniques of RC elements		
CO 5	Skill to perform	various Non Destructive Testing of RC elements		
	ADVA	ANCED STRUCTURAL ENGINEERING LAB		
Course designed by		CIVIL Department		
Approval		Approved by: Meeting of Board of Studies held on 13 th June, 2015		
		Ratified by: 1 st Meeting of Academic Council, 27 th June, 2015		

SEMESTER -II

		L	Τ	P	С
A1STT105	SUBSTRUCTURE DESIGN	3	0	0	3
	Total Contact Hours – 3(L)/W				
	Prerequisite : GTE – I&II				
COURSE O	BJECTIVES				
COB 1	To Familiarize Soil exploration techniques and soil sampling				
COP 2	To Understand the determination of bearing capacity of soil and o	lesi	gn s	uita	ble
shallow and Deep foundations					
COB 3	Evaluate the load carrying capacity of pile foundations				
COB 4	Understand the concept of liquefaction of soils				

UNIT I SOILEXPLORATION

Importance, Terminology, planning - Geophysical methods - Borings, location, spacing and depth - Methods of boring including drilling - Stabilization of boreholes

UNIT II SOIL SAMPLING

Methods of sampling - Types of samples and samplers cleaning of bore holes - Preservation, labelling and shipment of samples - Design considerations of open drive samplers

UNIT III BEARING CAPACITY

.General bearing capacity equation - Meyerhof's, Hansen's and Vesic's bearing capacity factors - Bearing capacity of stratified soils -Bearing capacity based on penetration resistance - Safe bearing capacity and allowable bearing pressure

UNIT IV

SHALLOW FOUNDATION

Design considerations - Proportioning of shallow foundations - Isolated and combined footings and mats - Design procedure for mats - Fundamentals of beams on Elastic foundations

UNIT V

PILE FOUNDATIONS

Classification of piles - Factors influencing choice - Load carrying capacity of single - Methods - Pile groups

TEXT BOOKS

- 1. Principles of Foundation Engineering by Braja M. Das.
- 2. Soil mechanics and foundation engineering by A.K.Arora.
- 3. Soil Mechanics in Engineering Practice by Terzagi and Peck

REFERENCES:

1. Analysis and Design of sub structures by Swami Saran

2. Design Aids in Soil Mechanics and Foundation Engineering by Shanbaga R. Kaniraj, Tata Mc. Graw Hill.

3. Foundation Design and Construction by MJ Tomlinson - Longman Scientific

- 4. Foundation Analysis and Design by J.E. Bowles McGraw Hill Publishing Co.,5. Foundation Design by Wayne C. Teng, John Wiley & Co.,6. Relevant IS codes

COUR	COURSE OUTCOMES				
CO 1	Know various	s samples, sampler techniques and borings methods			
CO 2	Ability to eva	luate bearing capacity for shallow foundations			
CO 3	Ability to evaluate the load carrying capacity of pile foundations				
		SUBSTRUCTURE DESIGN			
Course	designed by	CIVIL Department			
A		Approved by: Meeting of Board of Studies held on 13 th June, 2015			
Арргота		Ratified by: 1 st Meeting of Academic Council, 27 th June, 2015			

		L	Τ	P	С
A1STT106	FINITE ELEMENT METHOD	3	1	0	4
	Total Contact Hours $- 3(L) + 1(T)/W$				
	Prerequisite : SA-II ; Theory of Elasticity				
COURSE O	BJECTIVES				
COB 1	To equip the students with the finite element analysis fundamentals				
COR 2	To introduce basic aspects of finite element technology, including domain,				
COB 2	Discretization, polynomial interpolation, application of boundary conditions				
COB 3	Perform analysis of 2-D structures using plane stress and plane strain cases				
COB 4	Perform finite element analysis using 2-D triangular and rectangular elements				
COB 5	To enable the students to formulate the design problems into FEA				

BASICS OF FINITE ELEMENT METHOD

Different steps involved in finite element method (FEM) - Different approaches of FEM - Direct method - Variation Principle & Weighted Residual method.

UNIT II

1 DIMENSIONAL AND 2 DIMENSIONAL FEM

Equations of equilibrium - Strain displacement relations - Stress strain relations- Plane stress and Plane strain problem - Boundary Conditions

UNIT III

ELEMENT PROPERTIES

.Displacement models - Shape functions - Stiffness matrices - One dimensional bar element -Two dimensional truss elements - Three dimensional truss elements - Two dimensional beam elements - Three dimensional beam elements - Analysis of framed structures using truss and beam elements - Lagrangian interpolation - Pascal's triangle - Convergence criteria.

UNIT IV

PLANE STRESS AND PLANE STRAIN PROBLEMS

Analysis of plates using triangular CST elements – Rectangular elements - Axi-symmetric elements

UNIT V

ISO PERIMETRIC ELEMENTS

Four node and Eight node elements, Analysis of plates by rectangular elements - Triangular elements and quadrilateral elements, Numerical integration (Gauss Quadrature), Introduction to Non-Linear Analysis by FEM

TEXT BOOKS

1. R. D. Cook, Concepts and Applications of Finite Element Analysis, John Wiley& Sons, New York

2. Logan D.L., A first course in the Finite Element Method, Thomson Asia Pvt. Ltd., Mumbai, 2004.

REFERENCE BOOKS:

1. T. R. Chandrupatla & A. D. Belegundu, Introduction to Finite Elements in Engineering, Prentice Hall of India Pvt. Ltd., New Delhi.

2. Desai, C.S. and Abel, J.F., "Introduction to Finite Element Method", CBS Publishers and Distributors, New Delhi, 1987.

3. C. S. Krishnamoorthy, Finite Element analysis-Theory and Programming, Tata McGraw Hill.

COURSE C	UTCOMES
CO_1	Ability to generate the governing FE equations for different structural elements
COT	in 1D, 2D, 3D, Plane stress, Plane strain and Axisymmtric geometries.
CO^{2}	Ability to adopt different Coordinate systems like Cartesian, Natural, Area,
	Volume Co-ordinate systems and appreciate their application in FEM
CO 3	Ability to apply Lagrangean and Serendipity methods to obtain Shape functions
CO 4	Ability to formulate Finite Element Equations for Iso-parametric elements
CO 5	Ability to apply FEM to structural mechanics problems with special emphasis
05	on truss, beam, frame, and plate elements

FINITE ELEMENT METHOD				
Course designed by	CIVIL Department			
Approval	Approved by: Meeting of Board of Studies held on 13 th June, 2015			
Appiovai	Ratified by: 1 st Meeting of Academic Council, 27 th June, 2015			

A1STT106		L	Τ	P	С	
	STABILITY OF STRUCTURES	3	1	0	4	
	Total Contact Hours $- 3(L) + 1(T)/W$					
	Prerequisite : Mathematics					
COURSE O	BJECTIVES					
COB 1	Understand the behavior of Beam – columns with different boundary conditions					
COD 2	To provide a detailed treatment of Elastic and In-elastic buckling characteristics					
COB 2	of various structural elements					
COB 3	To present different methods to solve Torsional and lateral buckling of beams					

UNIT I BEAM COLUMNS

Differential equation for beam columns - Beams column with concentrated loads - Continuous lateral load & couples - Beam column with built in ends - continuous beams with axial load - Determination of allowable stresses.

UNIT II

ELASTIC BUCKLING OF BARS

Elastic buckling of straight columns - Effect of shear stress on buckling - Eccentrically and laterally loaded columns - Energy methods - Buckling of a bar on elastic foundation - Buckling of bar with intermediate compressive forces and distributed axial loads- Effect of shear force on critical load- Built up columns Effect of Initial curvature on bars - Buckling of frames

UNIT III

IN-ELASTIC BUCKLING

Buckling of straight bars - Double modulus theory - Tangent modulus theory-Experiments and design formulae: Experiments on columns - Critical stress diagram - Empirical formulae of design -Various end conditions - Design of columns based on buckling.

UNIT IV

TORSIONAL BUCKLING

Non uniform torsion of thin walled bars of open cross section - Torsional buckling - Buckling of Torsion and Flexure.

UNIT V

LATERAL BUCKLING OF SIMPLY SUPPORTED BEAMS

Beams of rectangular cross section subjected for pure bending - Buckling of I Section subjected to pure bending.

TEXT BOOKS:

- 1. Theory of Elastic Stability by Timshenko & Geri-McGraw Hill
- 2. Theory of Stability of Structures by Alexander Chafes.

REFERENCE BOOKS:

1. T.V. Gal ambos, "Guide to Stability Design Criteria for Metal Structures," Wiley, 5th edition 1998.

2. Luis A. Godoy, "Theory of Elastic Stability: Analysis and Sensitivity," Taylor & Francis Group, 2000.

COURSE C	COURSE OUTCOMES						
CO 1	Ability to	vility to analyze Beam – columns with different boundary conditions					
CO 2	Ability structura	ability to study Elastic and In-elastic buckling characteristics of various tructural elements					
CO 3	Ability to	o solve Torsional and lateral buckling of beams					
		STABILITY OF STRUCTURES					
Course designed by		CIVIL Department					
Ammorial		Approved by: Meeting of Board of Studies held on 13 th June, 2015					
Appiovai		Ratified by: 1 st Meeting of Academic Council, 27 th June, 2015					

		L	Т	Р	С	
A 10TT100	PRE-STRESSED CONCRETE	3	1	0	4	
A1511100	Total Contact Hours $- 3(L) + 1(T)/W$					
	Prerequisite: SM - 1 & 2, DRCS - 1 & 2					
COURSE O	BJECTIVES					
COB 1	Understand the terminology related to pre-stressing and pre-stress	ing	syst	ems	•	
COB 2	Be able to understand the general mechanical behavior of prestres	sed	con	crete	e	
COB 3	Be able to perform analysis and design of prestressed concrete me	embe	ers			
COP 4	Be able to calculate various losses occurs in Pre and Post tension methods of					
COD 4	Pre stressing					
COP 5	Analyze and design the anchorage systems for pre-stressing at the construction					
	site					
COB 6	To analyse and design composite sections					

UNIT I INTRODUCTION

General Principles of Pre-stressing – Pre tensioning and Post tensioning methods – Different systems of Pre-stressing – Analysis of Pre-stress and bending stress – Resultant stress at a section – Pressure line – Concept of Load balancing – Stresses in tendons

UNIT II

LOSSES OF PRE-STRESS (AS PER IS:1343-2012)

Losses of Pre-stress in Pre and Post tensioned members due to various reasons – Elastic shortening of concrete, Shrinkage of concrete, Creep of concrete, Relaxation of steel, Slip in anchorage, differential shrinkage – frictional losses- long term losses

UNIT III

DESIGN OF PRE-STRESSED SECTIONS

Types of flexure failures – code procedures – Shear and Principal stresses – Design of sections for Flexure, Shear, Axial tension, Compression and bending and bond

UNIT IV

DEFLECTIONS OF PRE-STRESSED CONCRETE BEAMS

Importance of control of deflections – Factors influencing deflections – Short term deflection calculations of un-cracked and cracked members – Prediction of Long term deflections Analysis of end blocks by Guyon's and Magnel method – Anchorage zone stresses – Approximate method of design – anchorage zone reinforcement –

UNIT V

COMPOSITE SECTIONS

Introduction – Analysis for stresses – differential shrinkage – general design considerations

TEXT BOOKS:

1. Code Book of IS 1343:2012

2. T. Y. Lin and H. Burns Ned, Design of Prestressed concrete structures, John Willey & Sons, New York-1982.

3. N. Krishnaraju, Prestressed concrete, Tata McGraw Hill, New Delhi-2004.

REFERENCE BOOKS:

 Y. Guyen, Prestressed concrete Vol-I & Vol.-II, John Willey & Sons, New York-1960
 S. K. Mallik and A. P. Gupta, Prestressed concrete, Oxford & IBH, New Delhi-1982.
 E. W. Bennet, Prestressed concrete, Theory & Design, Chapman & Hall, London-1962

COURSE C	COURSE OUTCOMES					
CO 1	Ability	to analysis and Design of pre-tensioned as well as post-tensioned				
COT	concrete	beams				
CO^{2}	Ability t	Ability to analyse and design the anchorage systems for pre-stressing at the				
02	construct	tion site				
CO 3	Ability to	o design various pre-stressed structures				
CO 4	Ability to	o predict short term and long term deflections in PSC members				
CO 5	Ability to	o design Composite sections				
	PRE-STRESSED CONCRETE					
Course designed by		CIVIL Department				
Approval		Approved by: Meeting of Board of Studies held on 13 th June, 2015				
Appioval		Ratified by: 1 st Meeting of Academic Council, 27 th June, 2015				

		L	Τ	P	С	
A 10TT 207	STRUCTURAL OPTIMIZATION	3	0	0	3	
A1511207	Total Contact Hours – 3(L)					
	Prerequisite :					
COURSE C	BJECTIVES					
	To introduce the concepts of design optimization and review major					
COB 1	conventional and modern optimization methods used in structural optimization					
	applications					
COB 2	Apply optimization for minimum weight design of structures					
COB 3	Apply classical optimization techniques in engineering problems					
COB 4	Apply the linear programming techniques in engineering optimization.					
COB 5	Perform plastic analysis of structure and design of structural elements based on					
	minimum weight concept.					

INTRODUCTION: Need and scope for optimization – statements of optimization problems-Objective function and its surface design variables- constraints and constraint surface-Classification of optimization problems (various functions continuous, discontinuous and discrete) and function behaviour (monotonic and uni-modal)

UNIT II

CLASSICAL OPTIMIZATION TECHNIQUES: Differential calculus method, multivariable optimization by method of constrained variation and Lagrange multipliers (generalized problem) Khun-Tucker conditions of optimality.

UNIT III

Fully stressed design and optimality criterion based algorithms introduction, characteristics of fully stressed design theoretical basis examples

UNIT IV

LINEAR PROGRAMMING: Definitions and theorems- Simplex method-Duality in Linear programming, simple applications

UNIT V

MINIMUM WEIGHT DESIGN: Plastic analysis and Minimum weight design and rigid frame

TEXT BOOKS

1. Optimization Theory and Applications – S.S. Rao, Wiley Eastern Limited, New Delh 2. Rackwitz R, Augusti G and Borri A. Reliability and Optimization of Structural Systems, Chapman & Hall, London, UK, 1995.

REFERENCES:

1. Optimization Concepts and Application in Engineering- Belegundu A.D. and Chandrapatla T.R.

COURS	COURSE OUTCOMES					
CO 1	Ability to apply the basic ideas in optimization to make the structures as lightly as					
01	possible.					
CO 2	Ability to ap	ply classical optimization techniques in engineering problems				
CO 3	To apply the linear programming techniques in engineering optimization.					
CO 4	Ability to perform plastic analysis of structure and design of structural elements					
CO 4	based on minimum weight concept.					
		STRUCTURAL OPTIMIZATION				
Course designed by		CIVIL Department				
Approval		Approved by: Meeting of Board of Studies held on 13 th June, 2015				
		Ratified by: 1 st Meeting of Academic Council, 27 th June, 2015				

		L	Т	Р	С	
	BRIDGE ENGINEERING	3	1	0	4	
A1511208	Total Contact Hours – 3(L)					
	Prerequisite :					
COURSE C	DBJECTIVES					
	To develop an understanding of and appreciation for basic concepts in					
COB 1	proportioning and design of bridges in terms of aesthetics, geographical					
	location and functionality					
COB 2	To understand the load flow mechanism and identify loads on brid	lges				
COB 3	To carry out a design of bridge starting from conceptual design	ign,	, se	lecti	ing	
COB 5	suitable bridge, geometry to sizing of its elements					
COB 4	00Understand the concept of planning and investigation for	br	idge	es a	nd	
	Analyze and design superstructures for various types of bridges					
COB 5	Analyze and design various types of substructures and foundations					

UNIT I INTRODUCTION

Introduction to bridge engineering – Components of a bridge, classification – importance of bridges, Historical development, Conceptual bridge design.Standard specifications for road bridges – Indian roads congress bridge code – width of carriageway – clearances – loads – dead load, IRC standards for live load, impact effect. Application of live load on deck slab, Wind load, longitudinal, centrifugal forces, Horizontal forces due to water currents, Buoyancy effect, Earth pressure, temperature effect, seismic effect, deformation, secondary and erection stresses.

UNIT II

SUPER STRUCTURE

Slab bridge- Wheel load on slab- effective width method- slabs supported on two edgescantilever slabs- dispersion length- Design of interior panel of slab- Pigeaud's method.

UNIT III

PLATE GIRDER BRIDGES

Elements of plate girder and their design-web flange-intermediate stiffener- vertical stiffeners- bearing stiffener design problem

UNIT IV

Design of Pipe culvert, Slab culvert and Box culverts and their reinforcement detailing

UNIT V SUB STRUCTURE

Abutments – Stability analysis of abutments – piers – Loads on piers- Analysis of piers – Design problem **BEARINGS** – Classification – Design principles

TEXT BOOKS:

- 1. Essentials of bridge engineering- Jhonson Victor D,.
- 2. Design of bridges- Krishna Raju

REFERENCE BOOKS:

1.Design of Highway Bridges, Richard M. Barker, Jay A. Puckett / John Wiley & Sons, Inc. 1997

2. Design of Modern Concrete Highway Bridges / Conrad P. Heins, Richard Lawrie / Wiley, 1984

COUR	COURSE OUTCOMES						
CO 1	Ability to apply various IRC standards for live load impact effect.						
CO 2	Ability to design the interior panel of the deck slab using Pigeaud's method.						
CO 3	Ability to design various types of culverts with their reinforcement detailing.						
CO 4	Ability to design a bridge with plate girders having end bearing and						
	intermediate stiffeners						
CO 5	Ability to analyse the stability of abutments and piers						
CO 6	Ability to understand the effect of various loads like wind load, seismic load,						
	horizontal forces due to water currents on bridges.						

BRIDGE ENGINEERING				
Course designed by CIVIL Department				
Annuoval	Approved by: Meeting of Board of Studies held on 13 th June, 2015			
Appiovai	Ratified by: 1 st Meeting of Academic Council, 27 th June, 2015			

		L	Τ	P	С	
A 1 CTT 200	REPAIR AND EHABILITATION OF STRUCTURES	3	1	0	4	
A1511209	Total Contact Hours – 3(L)					
	Prerequisite : CT					
COURSE O	BJECTIVES					
COP 1	To have an understanding of the underlying cause or causes of concrete distress					
COBI	and deterioration					
COB 2	To have knowledge of different materials and techniques for repair					
COB 3	To have knowledge of repair and rehabilitation of deteriorated members					
COB 4	To understand the need and importance of demolition					

MAINTENANCE AND INTENANCE AND REPAIR STRATEGIES

Maintenance, repair and rehabilitation, Facts of Maintenance, importance of Maintenance various aspects of Inspection, Assessment procedure for evaluating a damaged structure by NDT, causes of deterioration.

UNIT II

MATERIALS FOR REPAIR

Special concretes and mortar, concrete chemicals, special elements for accelerated strength gain, Expansive cement, polymer concrete, sulphur infiltrated concrete, ferro cement, Fibre reinforced concrete.

UNIT III

TECHNIQUES FOR REPAIR

Repair techniques for distressed concrete members- Rust eliminators and polymers coating for rebars- foamed concrete, mortar and dry pack, vacuum concrete, Gunite and Shotcrete, Epoxy injection, Mortar repair for cracks, shoring and underpinning.

UNIT IV

REHABILITATION AND RETROFITTING OF STRUCTURES

Repairs to overcome low member strength, Deflection, Cracking, Chemical disruption, weathering corrosion and marine exposure.

UNIT V

DEMOLITION OF STRUCTURES

Need and importance for demolition- outline of various demolition methods and their evaluation, partial and controlled demolition, role of safety measures, temporary support structures in demolition - case studies.

TEXT BOOKS:

1. Denison Campbell, Allen and Harold Roper," Concrete Structures, Materials, Maintenance and Repair", Longman Scientific and Technical UK, 1991.

2. R.T.Allen and S.C.Edwards, Repair of Concrete Structures, Blakie and Sons, UK, 1987

REFERENCE BOOKS:

1. Santhakumar, A.R., Training Course notes on Damage Assessment and repair in Low Cost Housing, "RHDC-NBO" Anna University, July 1992.

2. Raikar, R.N., Learning from failures - Deficiencies in Design, Construction and Service - R&D Centre (SDCPL), RaikarBhavan, Bombay, 1987.

3. N.Palaniappan, Estate Management, Anna Institute of Management, Chennai, 1992.

COURSE O	COURSE OUTCOMES					
CO 1	Ability to	bility to study causes of concrete distress and deterioration				
CO 2	Knowled	lge of different materials and techniques for repair				
CO 3	Knowled	lge of repair and rehabilitation of deteriorated members				
CO 4	Apprecia	te need and importance of demolition				
	REP	AIR AND REHABILIATION OF STRUCTURES				
Course designed by		CIVIL Department				
Approval		Approved by: Meeting of Board of Studies held on 13 th June, 2015				
		Ratified by: 1 st Meeting of Academic Council, 27 th June, 2015				

		L	Т	P	С		
A1STT210	STRUCTURAL RELIABILITY	3	0	0	3		
	Total Contact Hours – 3(L)/W						
	Prerequisite :						
COURSE O	COURSE OBJECTIVES						
COB 1	Understand use of general concepts of statistics for probabilistic analysis						
COB 2	Understand the basic concepts related to reliability analysis of structures						
COB 3	Design the structures for various reliability indices						

CONCEPTS OF STRUCTURAL SAFETY: General, Design methods.

Basic Statistics: Introduction, Data reduction, Histograms, Sample correlation..

UNIT II

PROBABILITY THEORY: Introduction, Random events, Random variables, Functions of random variables, Moments and expectation, Common probability distribution, Extremal distribution.

UNIT III

RESISTANCE DISTRIBUTIONS AND PARAMETERS: Introduction, Statistics of properties of concrete, Statistics of properties of steel, Statistics of strength of bricks and mortar, Dimensional variations, Characterization of variables, Allowable stresses based on specified reliability.

UNIT IV

Basic structural reliability, Introduction Reliability methods, Failure surface, Definition of Reliability in standard normal space (Cornell's reliability index), First order reliability method (FORM).

UNIT V

SORM (Second order reliability method, Computation of structural reliability. Monte Carlo Study of Structural Safety: General, Monte Carlo method, Applications

TEXT BOOKS

1. RackwitzR,Augusti G and BorriA. Reliability and Optimization of Structural Systems, Chapman & Hall, London, UK, 1995.

2. L S Srinath Reliability Engineering, East west press, 2005.

REFERENCE BOOKS:

1. Ranganathan R.Structural Reliability Analysis & Design. Jaico Publishing House, Mumbai, India, 1999.

2. "Structural Reliability" by Melchers, R.E.

COURSE OUTCOMES					
CO 1	Ability to use the	basic concepts of statistics in probability.			
CO 2	Ability to underst	and the concept of probability and apply it.			
CO_3	Able to compute	reliability indices for simple structural engineering problems			
05	as beams, trusses.				
CO_{4}	Ability to underst	stand basic concepts of structural reliability and reliability			
CO 4	based design of st	tructural systems such as trusses and frames.			
		STRUCTURAL RELIABILITY			
Course	Course designed by CIVIL Department				
Approval		Approved by: Meeting of Board of Studies held on 13 th June, 2015			
Аррю	al	Ratified by: 1 st Meeting of Academic Council, 27 th June, 2015			

A1STT211		L	Τ	P	С
	DESIGN OF HYDRAULIC STRUCTURES	3	1	0	4
	Total Contact Hours $- 3(L) + 1(T)/W$				
	Prerequisite : WRE – I & II				
COURSE OBJECTIVES					
COB 1	Integrate the hydraulics and water resources background by involving the students				
COBT	in water structures design applications				
COB 2	To develop understanding of the basic principles and concepts of analysis and				
	design of hydraulic structures				

DIVERSION HEAD WORKS: Introductory perspectives- Types of diversion head works – components – Design of weirs and barrages

UNIT II

LOADING -Concepts and criteria, Gravity dam analysis, design features and stabilityelementary profile of gravity dam- Concrete for dams – roller compacted concrete gravity dams

UNIT III

DAM OUTLET WORKS: Spillways – Ogee spillway - cavitation on spillway – design feature- design principles and design of spillways – Chute spillways –Energy dissipation – stilling basins

UNIT IV

DROP STRUCTURES:Sarda fall – Glacis fall –Design principles- Cross regulator, head regulator and functions

UNIT V

CROSS DRAINAGE WORKS: Types – Selection – Design of Aqueduct – Siphon aqueduct and Super passage

TEXT BOOKS:

1. Design of minor irrigation and canal structures by C.Satyanarayana Murthy, Wiley

2. Irrigation engineering and Hydraulic structures by S.K.Garg, Standard Book House.

3. Theory & design of irrigation structures: R.S. Varshney, S.C. Gupta, R.L. Gupta.Roorkee, India :Nem Chand & Bros, 1979.

REFERENCE BOOKS:

1. "Hydraulic Structures" by P. Novak, - Unwin Hyman, London

COURSE OUTCOMES				
CO 1	Ability to design weirs and barrages			
CO 2	Ability to design over flow and non over flow gravity dams			
CO 3	Ability to design canal regulating structures (canal drops and regulators)			
CO 4	Ability to design cross drainage works			
CO 5	Ability to design weirs and barrages			
DESIGN OF HYDRAULIC STRUCTURES				
Course designed by		CIVIL Department		
Approval		Approved by: Meeting of Board of Studies held on 13 th June, 2015		
		Ratified by: 1 st Meeting of Academic Council, 27 th June, 2015		

A1STT212		L	Τ	P	C
	PLASTIC ANALYSIS AND DESIGN OF STEEL	2	1	0	1
	STRUCTURES	5	1	U	4
	Total Contact Hours $- 3(L) + 1(T)/W$				
	Prerequisite : DSS ; DRCS				
COURSE OBJECTIVES					
COB 1	To understand the concept of plastic moment carrying capacity				
COB 2	To make the student familiarize the formation of mechanism	n a	nd	plas	stic
	moment				
COB 3	To make the student understand minimum weight design of the structures				
TINITOT					

INTRODUCTION AND BASIC HYPOTHESIS: Concepts of stress and strain –Relation of steel Moment curvature relation- basic difference between elastic and plastic analysis with examples- Yield condition, idealizations, collapse criteria- Virtual work in the elastic-plastic state-Evaluation of fully plastic moment and shape factors for the various practical sections.

UNIT II

METHOD OF LIMIT ANALYSIS: Introduction to limit analysis of simply supported fixed beams and continuous beams, Effect of partial fixity and end, invariance of collapse loads, basic theorems of limit analysis, rectangular portal frames, gable frames, grids, superposition of mechanisms, drawing statistical bending moment diagrams for checks

UNIT III

LIMIT STATE DESIGN PRINCIPLES: Basic principles, limit design theorems, Application of limit design theorems, trial and error method, method of combining mechanisms, plastic moment distribution method, load replacement method, continuous beams and simple frames designs using above principles

UNIT IV

DEFLECTION IN PLASTIC BEAMS AND FRAMES: Load deflection relations for simply supported beams, deflection of simple pin based and fixed based portal frames, method of computing deflections

UNIT V

MINIMUM WEIGHT DESIGN: Introduction to minimum Weight and linear Weight functions- Foulkes theorems and its geometrical analogue and absolute minimum weight design

TEXT BOOKS:

- 1. Plastic Methods of Structural analysis- B G Neal, Chapman and Rall publications
- 2. Plastic analysis and Design C E Messennet, M A Seve

REFERENCE BOOKS:

1. Plastic Analysis and design – Manickselvam

COURSE OUTCOMES				
CO 1	Ability to calculate the concept of plastic moment carrying capacity of structures			
CO 2	Ability to formulate mechanism and plastic moment			
CO 3	Ability to perform minimum weight design of the structures			
PLASTIC ANALYSIS AND DESIGN OF STEEL STRUCTURES				
Course designed by		CIVIL Department		
Approval		Approved by: Meeting of Board of Studies held on 13 th June, 2015		
		Ratified by: 1 st Meeting of Academic Council, 27 th June, 2015		

A1STL102		L	Τ	P	С	
	COMPUTER APPLICATIONS IN STRUCTURAL	2	1	0	1	
	ENGINEERING LAB	າ	1	0	4	
	Total Contact Hours $- 3(L) + 1(T)/W$					
	Prerequisite :					
COURSE OBJECTIVES						
COB 1	To provide first-hand experience on engineering simulation and design of					
	different structures using commercial FE analysis software (STAAD Pro).					
COB 2	To make the student familiar with development of Excel Spread sheets for					
	various components of structures					
COB 3	To introduce the ANSYS software and Analysis of Simple beam using ANSYS			'S		

LIST OF EXPERIMENTS:

Exercises using Excel

- 1. Spread sheets for design of Beams using Excel
- 2. Spread sheets for design of Columns using Excel
- 3. Spread sheets for design of Spread, combined and Strip footing using Excel

Exercises using STAAD Pro.

- 1. Analysis and Design of Beams using STAAD Pro.
- 2. Analysis and Design of Planar Truss STAAD Pro.
- 3. Analysis and Design of 3D Multistory frame for DL,LL,WL and EQ loads
- 4. Analysis and Design of Water tank
- 5. Analysis and Design of Transmission line tower

Exercises using ANSYS

- 1. Introduction to ANSYS
- 2. Analysis of 3 D Steel beam using ANSYS

Note: Any eight exercises can be conducted

REFERENCES

1. <u>http://www.bentley.com/en-US/Products/STAAD.Pro/</u>

COURSE OUTCOMES			
CO 1	Ability to design different structures using commercial FE analysis software (STAAD Pro).		
CO 2	Ability to develop Excel Spread sheets for various components of structures		
CO 3	Ability to Analysis of Simple beams using ANSYS software		

COMPUTER APPLICATIONS IN STRUCTURAL ENGINEERING LAB				
Course designed by	CIVIL Department			
Approval	Approved by: Meeting of Board of Studies held on 13 th June, 2015			
Appiovai	Ratified by: 1 st Meeting of Academic Council, 27 th June, 2015			